Computer Science > Machine Learning
[Submitted on 19 Jun 2023]
Title:Leveraging The Edge-to-Cloud Continuum for Scalable Machine Learning on Decentralized Data
View PDFAbstract:With mobile, IoT and sensor devices becoming pervasive in our life and recent advances in Edge Computational Intelligence (e.g., Edge AI/ML), it became evident that the traditional methods for training AI/ML models are becoming obsolete, especially with the growing concerns over privacy and security. This work tries to highlight the key challenges that prohibit Edge AI/ML from seeing wide-range adoption in different sectors, especially for large-scale scenarios. Therefore, we focus on the main challenges acting as adoption barriers for the existing methods and propose a design with a drastic shift from the current ill-suited approaches. The new design is envisioned to be model-centric in which the trained models are treated as a commodity driving the exchange dynamics of collaborative learning in decentralized settings. It is expected that this design will provide a decentralized framework for efficient collaborative learning at scale.
Submission history
From: Ahmed M. Abdelmoniem [view email][v1] Mon, 19 Jun 2023 10:59:41 UTC (206 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.