Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Jun 2023 (v1), last revised 22 Mar 2024 (this version, v2)]
Title:FunQA: Towards Surprising Video Comprehension
View PDF HTML (experimental)Abstract:Surprising videos, such as funny clips, creative performances, or visual illusions, attract significant attention. Enjoyment of these videos is not simply a response to visual stimuli; rather, it hinges on the human capacity to understand (and appreciate) commonsense violations depicted in these videos. We introduce FunQA, a challenging video question-answering (QA) dataset specifically designed to evaluate and enhance the depth of video reasoning based on counter-intuitive and fun videos. Unlike most video QA benchmarks which focus on less surprising contexts, e.g., cooking or instructional videos, FunQA covers three previously unexplored types of surprising videos: 1) HumorQA, 2) CreativeQA, and 3) MagicQA. For each subset, we establish rigorous QA tasks designed to assess the model's capability in counter-intuitive timestamp localization, detailed video description, and reasoning around counter-intuitiveness. We also pose higher-level tasks, such as attributing a fitting and vivid title to the video and scoring the video creativity. In total, the FunQA benchmark consists of 312K free-text QA pairs derived from 4.3K video clips, spanning a total of 24 video hours. Moreover, we propose FunMentor, an agent designed for Vision-Language Models (VLMs) that uses multi-turn dialogues to enhance models' understanding of counter-intuitiveness. Extensive experiments with existing VLMs demonstrate the effectiveness of FunMentor and reveal significant performance gaps for the FunQA videos across spatial-temporal reasoning, visual-centered reasoning, and free-text generation.
Submission history
From: Jingkang Yang [view email][v1] Mon, 26 Jun 2023 17:59:55 UTC (20,052 KB)
[v2] Fri, 22 Mar 2024 13:24:35 UTC (32,214 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.