Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Jul 2023 (v1), last revised 24 Oct 2023 (this version, v3)]
Title:Back to Optimization: Diffusion-based Zero-Shot 3D Human Pose Estimation
View PDFAbstract:Learning-based methods have dominated the 3D human pose estimation (HPE) tasks with significantly better performance in most benchmarks than traditional optimization-based methods. Nonetheless, 3D HPE in the wild is still the biggest challenge for learning-based models, whether with 2D-3D lifting, image-to-3D, or diffusion-based methods, since the trained networks implicitly learn camera intrinsic parameters and domain-based 3D human pose distributions and estimate poses by statistical average. On the other hand, the optimization-based methods estimate results case-by-case, which can predict more diverse and sophisticated human poses in the wild. By combining the advantages of optimization-based and learning-based methods, we propose the \textbf{Ze}ro-shot \textbf{D}iffusion-based \textbf{O}ptimization (\textbf{ZeDO}) pipeline for 3D HPE to solve the problem of cross-domain and in-the-wild 3D HPE. Our multi-hypothesis \textit{\textbf{ZeDO}} achieves state-of-the-art (SOTA) performance on Human3.6M, with minMPJPE $51.4$mm, without training with any 2D-3D or image-3D pairs. Moreover, our single-hypothesis \textit{\textbf{ZeDO}} achieves SOTA performance on 3DPW dataset with PA-MPJPE $40.3$mm on cross-dataset evaluation, which even outperforms learning-based methods trained on 3DPW.
Submission history
From: Zhongyu Jiang [view email][v1] Fri, 7 Jul 2023 21:03:18 UTC (1,135 KB)
[v2] Wed, 23 Aug 2023 17:40:11 UTC (1,135 KB)
[v3] Tue, 24 Oct 2023 20:46:24 UTC (1,227 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.