Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Jul 2023 (v1), last revised 2 Apr 2024 (this version, v3)]
Title:FISTNet: FusIon of STyle-path generative Networks for Facial Style Transfer
View PDF HTML (experimental)Abstract:With the surge in emerging technologies such as Metaverse, spatial computing, and generative AI, the application of facial style transfer has gained a lot of interest from researchers as well as startups enthusiasts alike. StyleGAN methods have paved the way for transfer-learning strategies that could reduce the dependency on the huge volume of data that is available for the training process. However, StyleGAN methods have the tendency of overfitting that results in the introduction of artifacts in the facial images. Studies, such as DualStyleGAN, proposed the use of multipath networks but they require the networks to be trained for a specific style rather than generating a fusion of facial styles at once. In this paper, we propose a FusIon of STyles (FIST) network for facial images that leverages pre-trained multipath style transfer networks to eliminate the problem associated with lack of huge data volume in the training phase along with the fusion of multiple styles at the output. We leverage pre-trained styleGAN networks with an external style pass that use residual modulation block instead of a transform coding block. The method also preserves facial structure, identity, and details via the gated mapping unit introduced in this study. The aforementioned components enable us to train the network with very limited amount of data while generating high-quality stylized images. Our training process adapts curriculum learning strategy to perform efficient, flexible style and model fusion in the generative space. We perform extensive experiments to show the superiority of FISTNet in comparison to existing state-of-the-art methods.
Submission history
From: Sunder Ali Khowaja [view email][v1] Tue, 18 Jul 2023 07:20:31 UTC (23,870 KB)
[v2] Thu, 19 Oct 2023 13:51:08 UTC (23,458 KB)
[v3] Tue, 2 Apr 2024 15:46:19 UTC (23,869 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.