Computer Science > Machine Learning
[Submitted on 17 Aug 2023]
Title:Cross-city Few-Shot Traffic Forecasting via Traffic Pattern Bank
View PDFAbstract:Traffic forecasting is a critical service in Intelligent Transportation Systems (ITS). Utilizing deep models to tackle this task relies heavily on data from traffic sensors or vehicle devices, while some cities might lack device support and thus have few available data. So, it is necessary to learn from data-rich cities and transfer the knowledge to data-scarce cities in order to improve the performance of traffic forecasting. To address this problem, we propose a cross-city few-shot traffic forecasting framework via Traffic Pattern Bank (TPB) due to that the traffic patterns are similar across cities. TPB utilizes a pre-trained traffic patch encoder to project raw traffic data from data-rich cities into high-dimensional space, from which a traffic pattern bank is generated through clustering. Then, the traffic data of the data-scarce city could query the traffic pattern bank and explicit relations between them are constructed. The metaknowledge is aggregated based on these relations and an adjacency matrix is constructed to guide a downstream spatial-temporal model in forecasting future traffic. The frequently used meta-training framework Reptile is adapted to find a better initial parameter for the learnable modules. Experiments on real-world traffic datasets show that TPB outperforms existing methods and demonstrates the effectiveness of our approach in cross-city few-shot traffic forecasting.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.