Computer Science > Software Engineering
[Submitted on 25 Aug 2023]
Title:Human-in-the-loop online just-in-time software defect prediction
View PDFAbstract:Online Just-In-Time Software Defect Prediction (O-JIT-SDP) uses an online model to predict whether a new software change will introduce a bug or not. However, existing studies neglect the interaction of Software Quality Assurance (SQA) staff with the model, which may miss the opportunity to improve the prediction accuracy through the feedback from SQA staff. To tackle this problem, we propose Human-In-The-Loop (HITL) O-JIT-SDP that integrates feedback from SQA staff to enhance the prediction process. Furthermore, we introduce a performance evaluation framework that utilizes a k-fold distributed bootstrap method along with the Wilcoxon signed-rank test. This framework facilitates thorough pairwise comparisons of alternative classification algorithms using a prequential evaluation approach. Our proposal enables continuous statistical testing throughout the prequential process, empowering developers to make real-time decisions based on robust statistical evidence. Through experimentation across 10 GitHub projects, we demonstrate that our evaluation framework enhances the credibility of model evaluation, and the incorporation of HITL feedback elevates the prediction performance of online JIT-SDP models. These advancements hold the potential to significantly enhance the value of O-JIT-SDP for industrial applications.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.