Computer Science > Information Theory
[Submitted on 29 Aug 2023 (v1), last revised 27 Jan 2024 (this version, v2)]
Title:On k-Mer-Based and Maximum Likelihood Estimation Algorithms for Trace Reconstruction
View PDF HTML (experimental)Abstract:The goal of the trace reconstruction problem is to recover a string $x\in\{0,1\}^n$ given many independent {\em traces} of $x$, where a trace is a subsequence obtained from deleting bits of $x$ independently with some given probability $p\in [0,1).$ A recent result of Chase (STOC 2021) shows how $x$ can be determined (in exponential time) from $\exp(\widetilde{O}(n^{1/5}))$ traces. This is the state-of-the-art result on the sample complexity of trace reconstruction.
In this paper we consider two kinds of algorithms for the trace reconstruction problem.
Our first, and technically more involved, result shows that any $k$-mer-based algorithm for trace reconstruction must use $\exp(\Omega(n^{1/5}))$ traces, under the assumption that the estimator requires $poly(2^k, 1/\varepsilon)$ traces, thus establishing the optimality of this number of traces. The analysis of this result also shows that the analysis technique used by Chase (STOC 2021) is essentially tight, and hence new techniques are needed in order to improve the worst-case upper bound.
Our second, simple, result considers the performance of the Maximum Likelihood Estimator (MLE), which specifically picks the source string that has the maximum likelihood to generate the samples (traces). We show that the MLE algorithm uses a nearly optimal number of traces, \ie, up to a factor of $n$ in the number of samples needed for an optimal algorithm, and show that this factor of $n$ loss may be necessary under general ``model estimation'' settings.
Submission history
From: Kuan Cheng [view email][v1] Tue, 29 Aug 2023 02:47:46 UTC (295 KB)
[v2] Sat, 27 Jan 2024 03:11:11 UTC (27 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.