Computer Science > Multimedia
[Submitted on 11 Sep 2023]
Title:CANF-VC++: Enhancing Conditional Augmented Normalizing Flows for Video Compression with Advanced Techniques
View PDFAbstract:Video has become the predominant medium for information dissemination, driving the need for efficient video codecs. Recent advancements in learned video compression have shown promising results, surpassing traditional codecs in terms of coding efficiency. However, challenges remain in integrating fragmented techniques and incorporating new tools into existing codecs. In this paper, we comprehensively review the state-of-the-art CANF-VC codec and propose CANF-VC++, an enhanced version that addresses these challenges. We systematically explore architecture design, reference frame type, training procedure, and entropy coding efficiency, leading to substantial coding improvements. CANF-VC++ achieves significant Bjøntegaard-Delta rate savings on conventional datasets UVG, HEVC Class B and MCL-JCV, outperforming the baseline CANF-VC and even the H.266 reference software VTM. Our work demonstrates the potential of integrating advancements in video compression and serves as inspiration for future research in the field.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.