Computer Science > Computation and Language
[Submitted on 24 Sep 2023 (v1), last revised 29 Nov 2023 (this version, v2)]
Title:Arabic Sentiment Analysis with Noisy Deep Explainable Model
View PDFAbstract:Sentiment Analysis (SA) is an indispensable task for many real-world applications. Compared to limited resourced languages (i.e., Arabic, Bengali), most of the research on SA are conducted for high resourced languages (i.e., English, Chinese). Moreover, the reasons behind any prediction of the Arabic sentiment analysis methods exploiting advanced artificial intelligence (AI)-based approaches are like black-box - quite difficult to understand. This paper proposes an explainable sentiment classification framework for the Arabic language by introducing a noise layer on Bi-Directional Long Short-Term Memory (BiLSTM) and Convolutional Neural Networks (CNN)-BiLSTM models that overcome over-fitting problem. The proposed framework can explain specific predictions by training a local surrogate explainable model to understand why a particular sentiment (positive or negative) is being predicted. We carried out experiments on public benchmark Arabic SA datasets. The results concluded that adding noise layers improves the performance in sentiment analysis for the Arabic language by reducing overfitting and our method outperformed some known state-of-the-art methods. In addition, the introduced explainability with noise layer could make the model more transparent and accountable and hence help adopting AI-enabled system in practice.
Submission history
From: Md Shajalal [view email][v1] Sun, 24 Sep 2023 19:26:53 UTC (2,132 KB)
[v2] Wed, 29 Nov 2023 11:52:58 UTC (2,087 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.