Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Jun 2023]
Title:Deformation Monitoring of Tunnel using Phase-based Motion Magnification and Optical Flow
View PDFAbstract:During construction, continuous monitoring of underground tunnels can mitigate potential hazards and facilitate an in-depth understanding of the ground-tunnel interaction behavior. Traditional vision-based monitoring can directly capture an extensive range of motion but cannot separate the tunnel's vibration and deformation mode. Phase-based motion magnification is one of the techniques to magnify the motion in target frequency bands and identify system dynamics. Optical flow is a popular method of calculating the motion of image intensities in computer vision and has a much lower computational cost than Digital Image Correlation. This study combines PMM and OF to quantify the underground tunnel scene's magnified deformation mode pixel displacements. As motion magnification artifacts may lead to inaccurate quantification, the 2D Wiener filter is used to smooth the high-frequency content. With GPU acceleration, a dense OF algorithm computing each pixel's displacement is adopted to derive the whole scene motion. A validation experiment is conducted between the amplification motion and the actual motion of prisms preinstalled in the tunnel.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.