Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Oct 2023 (v1), last revised 23 Mar 2024 (this version, v3)]
Title:EvalCrafter: Benchmarking and Evaluating Large Video Generation Models
View PDF HTML (experimental)Abstract:The vision and language generative models have been overgrown in recent years. For video generation, various open-sourced models and public-available services have been developed to generate high-quality videos. However, these methods often use a few metrics, e.g., FVD or IS, to evaluate the performance. We argue that it is hard to judge the large conditional generative models from the simple metrics since these models are often trained on very large datasets with multi-aspect abilities. Thus, we propose a novel framework and pipeline for exhaustively evaluating the performance of the generated videos. Our approach involves generating a diverse and comprehensive list of 700 prompts for text-to-video generation, which is based on an analysis of real-world user data and generated with the assistance of a large language model. Then, we evaluate the state-of-the-art video generative models on our carefully designed benchmark, in terms of visual qualities, content qualities, motion qualities, and text-video alignment with 17 well-selected objective metrics. To obtain the final leaderboard of the models, we further fit a series of coefficients to align the objective metrics to the users' opinions. Based on the proposed human alignment method, our final score shows a higher correlation than simply averaging the metrics, showing the effectiveness of the proposed evaluation method.
Submission history
From: Yaofang Liu [view email][v1] Tue, 17 Oct 2023 17:50:46 UTC (13,427 KB)
[v2] Wed, 18 Oct 2023 01:15:01 UTC (13,427 KB)
[v3] Sat, 23 Mar 2024 04:58:50 UTC (47,846 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.