Computer Science > Machine Learning
[Submitted on 24 Oct 2023 (v1), last revised 8 Nov 2024 (this version, v2)]
Title:Using Time-Aware Graph Neural Networks to Predict Temporal Centralities in Dynamic Graphs
View PDF HTML (experimental)Abstract:Node centralities play a pivotal role in network science, social network analysis, and recommender systems. In temporal data, static path-based centralities like closeness or betweenness can give misleading results about the true importance of nodes in a temporal graph. To address this issue, temporal generalizations of betweenness and closeness have been defined that are based on the shortest time-respecting paths between pairs of nodes. However, a major issue of those generalizations is that the calculation of such paths is computationally expensive. Addressing this issue, we study the application of De Bruijn Graph Neural Networks (DBGNN), a time-aware graph neural network architecture, to predict temporal path-based centralities in time series data. We experimentally evaluate our approach in 13 temporal graphs from biological and social systems and show that it considerably improves the prediction of betweenness and closeness centrality compared to (i) a static Graph Convolutional Neural Network, (ii) an efficient sampling-based approximation technique for temporal betweenness, and (iii) two state-of-the-art time-aware graph learning techniques for dynamic graphs.
Submission history
From: Franziska Heeg [view email][v1] Tue, 24 Oct 2023 14:23:10 UTC (620 KB)
[v2] Fri, 8 Nov 2024 15:51:52 UTC (800 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.