Computer Science > Data Structures and Algorithms
[Submitted on 4 Nov 2023 (v1), last revised 6 Feb 2024 (this version, v2)]
Title:Succinct Data Structure for Graphs with $d$-Dimensional $t$-Representation
View PDFAbstract:Erdős and West (Discrete Mathematics'85) considered the class of $n$ vertex intersection graphs which have a {\em $d$-dimensional} {\em $t$-representation}, that is, each vertex of a graph in the class has an associated set consisting of at most $t$ $d$-dimensional axis-parallel boxes. In particular, for a graph $G$ and for each $d \geq 1$, they consider $i_d(G)$ to be the minimum $t$ for which $G$ has such a representation. For fixed $t$ and $d$, they consider the class of $n$ vertex labeled graphs for which $i_d(G) \leq t$, and prove an upper bound of $(2nt+\frac{1}{2})d \log n - (n - \frac{1}{2})d \log(4\pi t)$ on the logarithm of size of the class.
In this work, for fixed $t$ and $d$ we consider the class of $n$ vertex unlabeled graphs which have a {\em $d$-dimensional $t$-representation}, denoted by $\mathcal{G}_{t,d}$. We address the problem of designing a succinct data structure for the class $\mathcal{G}_{t,d}$ in an attempt to generalize the relatively recent results on succinct data structures for interval graphs (Algorithmica'21). To this end, for each $n$ such that $td^2$ is in $o(n / \log n)$, we first prove a lower bound of $(2dt-1)n \log n - O(ndt \log \log n)$-bits on the size of any data structure for encoding an arbitrary graph that belongs to $\mathcal{G}_{t,d}$.
We then present a $((2dt-1)n \log n + dt\log t + o(ndt \log n))$-bit data structure for $\mathcal{G}_{t,d}$ that supports navigational queries efficiently. Contrasting this data structure with our lower bound argument, we show that for each fixed $t$ and $d$, and for all $n \geq 0$ when $td^2$ is in $o(n/\log n)$ our data structure for $\mathcal{G}_{t,d}$ is succinct.
As a byproduct, we also obtain succinct data structures for graphs of bounded boxicity (denoted by $d$ and $t = 1$) and graphs of bounded interval number (denoted by $t$ and $d=1$) when $td^2$ is in $o(n/\log n)$.
Submission history
From: N.S Narayanaswamy [view email][v1] Sat, 4 Nov 2023 15:11:48 UTC (672 KB)
[v2] Tue, 6 Feb 2024 06:15:27 UTC (678 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.