Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 9 Nov 2023 (v1), last revised 11 Sep 2024 (this version, v2)]
Title:Using ResNet to Utilize 4-class T2-FLAIR Slice Classification Based on the Cholinergic Pathways Hyperintensities Scale for Pathological Aging
View PDF HTML (experimental)Abstract:The Cholinergic Pathways Hyperintensities Scale (CHIPS) is a visual rating scale used to assess the extent of cholinergic white matter hyperintensities in T2-FLAIR images, serving as an indicator of dementia severity. However, the manual selection of four specific slices for rating throughout the entire brain is a time-consuming process. Our goal was to develop a deep learning-based model capable of automatically identifying the four slices relevant to CHIPS. To achieve this, we trained a 4-class slice classification model (BSCA) using the ADNI T2-FLAIR dataset (N=150) with the assistance of ResNet. Subsequently, we tested the model's performance on a local dataset (N=30). The results demonstrated the efficacy of our model, with an accuracy of 99.82% and an F1-score of 99.83%. This achievement highlights the potential impact of BSCA as an automatic screening tool, streamlining the selection of four specific T2-FLAIR slices that encompass white matter landmarks along the cholinergic pathways. Clinicians can leverage this tool to assess the risk of clinical dementia development efficiently.
Submission history
From: Wei-Chun Tsai [view email][v1] Thu, 9 Nov 2023 16:08:55 UTC (1,266 KB)
[v2] Wed, 11 Sep 2024 16:41:57 UTC (1,266 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.