Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Sep 2023]
Title:Understanding Data Augmentation from a Robustness Perspective
View PDFAbstract:In the realm of visual recognition, data augmentation stands out as a pivotal technique to amplify model robustness. Yet, a considerable number of existing methodologies lean heavily on heuristic foundations, rendering their intrinsic mechanisms ambiguous. This manuscript takes both a theoretical and empirical approach to understanding the phenomenon. Theoretically, we frame the discourse around data augmentation within game theory's constructs. Venturing deeper, our empirical evaluations dissect the intricate mechanisms of emblematic data augmentation strategies, illuminating that these techniques primarily stimulate mid- and high-order game interactions. Beyond the foundational exploration, our experiments span multiple datasets and diverse augmentation techniques, underscoring the universal applicability of our findings. Recognizing the vast array of robustness metrics with intricate correlations, we unveil a streamlined proxy. This proxy not only simplifies robustness assessment but also offers invaluable insights, shedding light on the inherent dynamics of model game interactions and their relation to overarching system robustness. These insights provide a novel lens through which we can re-evaluate model safety and robustness in visual recognition tasks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.