Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Nov 2023]
Title:Continual Referring Expression Comprehension via Dual Modular Memorization
View PDFAbstract:Referring Expression Comprehension (REC) aims to localize an image region of a given object described by a natural-language expression. While promising performance has been demonstrated, existing REC algorithms make a strong assumption that training data feeding into a model are given upfront, which degrades its practicality for real-world scenarios. In this paper, we propose Continual Referring Expression Comprehension (CREC), a new setting for REC, where a model is learning on a stream of incoming tasks. In order to continuously improve the model on sequential tasks without forgetting prior learned knowledge and without repeatedly re-training from a scratch, we propose an effective baseline method named Dual Modular Memorization (DMM), which alleviates the problem of catastrophic forgetting by two memorization modules: Implicit-Memory and Explicit-Memory. Specifically, the former module aims to constrain drastic changes to important parameters learned on old tasks when learning a new task; while the latter module maintains a buffer pool to dynamically select and store representative samples of each seen task for future rehearsal. We create three benchmarks for the new CREC setting, by respectively re-splitting three widely-used REC datasets RefCOCO, RefCOCO+ and RefCOCOg into sequential tasks. Extensive experiments on the constructed benchmarks demonstrate that our DMM method significantly outperforms other alternatives, based on two popular REC backbones. We make the source code and benchmarks publicly available to foster future progress in this field: this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.