Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Nov 2023 (v1), last revised 6 Mar 2024 (this version, v2)]
Title:DECap: Towards Generalized Explicit Caption Editing via Diffusion Mechanism
View PDF HTML (experimental)Abstract:Explicit Caption Editing (ECE) -- refining reference image captions through a sequence of explicit edit operations (e.g., KEEP, DETELE) -- has raised significant attention due to its explainable and human-like nature. After training with carefully designed reference and ground-truth caption pairs, state-of-the-art ECE models exhibit limited generalization ability beyond the original training data distribution, i.e., they are tailored to refine content details only in in-domain samples but fail to correct errors in out-of-domain samples. To this end, we propose a new Diffusion-based Explicit Caption editing method: DECap. Specifically, we reformulate the ECE task as a denoising process under the diffusion mechanism, and introduce innovative edit-based noising and denoising processes. Thanks to this design, the noising process can help to eliminate the need for meticulous paired data selection by directly introducing word-level noises for training, learning diverse distribution over input reference caption. The denoising process involves the explicit predictions of edit operations and corresponding content words, refining reference captions through iterative step-wise editing. To further efficiently implement our diffusion process and improve the inference speed, DECap discards the prevalent multi-stage design and directly generates edit operations and content words simultaneously. Extensive ablations have demonstrated the strong generalization ability of DECap in various scenarios. More interestingly, it even shows great potential in improving the quality and controllability of caption generation.
Submission history
From: Zhen Wang [view email][v1] Sat, 25 Nov 2023 03:52:03 UTC (3,775 KB)
[v2] Wed, 6 Mar 2024 11:03:01 UTC (2,166 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.