Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Dec 2023 (v1), last revised 11 Dec 2024 (this version, v4)]
Title:Strong but simple: A Baseline for Domain Generalized Dense Perception by CLIP-based Transfer Learning
View PDF HTML (experimental)Abstract:Domain generalization (DG) remains a significant challenge for perception based on deep neural networks (DNNs), where domain shifts occur due to synthetic data, lighting, weather, or location changes. Vision-language models (VLMs) marked a large step for the generalization capabilities and have been already applied to various tasks. Very recently, first approaches utilized VLMs for domain generalized segmentation and object detection and obtained strong generalization. However, all these approaches rely on complex modules, feature augmentation frameworks or additional models. Surprisingly and in contrast to that, we found that simple fine-tuning of vision-language pre-trained models yields competitive or even stronger generalization results while being extremely simple to apply. Moreover, we found that vision-language pre-training consistently provides better generalization than the previous standard of vision-only pre-training. This challenges the standard of using ImageNet-based transfer learning for domain generalization. Fully fine-tuning a vision-language pre-trained model is capable of reaching the domain generalization SOTA when training on the synthetic GTA5 dataset. Moreover, we confirm this observation for object detection on a novel synthetic-to-real benchmark. We further obtain superior generalization capabilities by reaching 77.9% mIoU on the popular Cityscapes-to-ACDC benchmark. We also found improved in-domain generalization, leading to an improved SOTA of 86.4% mIoU on the Cityscapes test set marking the first place on the leaderboard.
Submission history
From: Manuel Schwonberg [view email][v1] Mon, 4 Dec 2023 16:46:38 UTC (27,050 KB)
[v2] Mon, 11 Dec 2023 08:22:47 UTC (16,837 KB)
[v3] Wed, 30 Oct 2024 22:58:36 UTC (14,604 KB)
[v4] Wed, 11 Dec 2024 03:37:28 UTC (14,604 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.