Computer Science > Cryptography and Security
[Submitted on 29 Dec 2023]
Title:Quantifying Policy Administration Cost in an Active Learning Framework
View PDF HTML (experimental)Abstract:This paper proposes a computational model for policy administration. As an organization evolves, new users and resources are gradually placed under the mediation of the access control model. Each time such new entities are added, the policy administrator must deliberate on how the access control policy shall be revised to reflect the new reality. A well-designed access control model must anticipate such changes so that the administration cost does not become prohibitive when the organization scales up. Unfortunately, past Access Control research does not offer a formal way to quantify the cost of policy administration. In this work, we propose to model ongoing policy administration in an active learning framework. Administration cost can be quantified in terms of query complexity. We demonstrate the utility of this approach by applying it to the evolution of protection domains. We also modelled different policy administration strategies in our framework. This allowed us to formally demonstrate that domain-based policies have a cost advantage over access control matrices because of the use of heuristic reasoning when the policy evolves. To the best of our knowledge, this is the first work to employ an active learning framework to study the cost of policy deliberation and demonstrate the cost advantage of heuristic policy administration.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.