Computer Science > Machine Learning
[Submitted on 22 Jan 2024 (v1), last revised 2 Aug 2024 (this version, v2)]
Title:Differentiable Tree Search Network
View PDFAbstract:In decision-making problems with limited training data, policy functions approximated using deep neural networks often exhibit suboptimal performance. An alternative approach involves learning a world model from the limited data and determining actions through online search. However, the performance is adversely affected by compounding errors arising from inaccuracies in the learned world model. While methods like TreeQN have attempted to address these inaccuracies by incorporating algorithmic inductive biases into the neural network architectures, the biases they introduce are often weak and insufficient for complex decision-making tasks. In this work, we introduce Differentiable Tree Search Network (D-TSN), a novel neural network architecture that significantly strengthens the inductive bias by embedding the algorithmic structure of a best-first online search algorithm. D-TSN employs a learned world model to conduct a fully differentiable online search. The world model is jointly optimized with the search algorithm, enabling the learning of a robust world model and mitigating the effect of prediction inaccuracies. Further, we note that a naive incorporation of best-first search could lead to a discontinuous loss function in the parameter space. We address this issue by adopting a stochastic tree expansion policy, formulating search tree expansion as another decision-making task, and introducing an effective variance reduction technique for the gradient computation. We evaluate D-TSN in an offline-RL setting with a limited training data scenario on Procgen games and grid navigation task, and demonstrate that D-TSN outperforms popular model-free and model-based baselines.
Submission history
From: Dixant Mittal [view email][v1] Mon, 22 Jan 2024 02:33:38 UTC (2,280 KB)
[v2] Fri, 2 Aug 2024 07:42:37 UTC (6,655 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.