Computer Science > Human-Computer Interaction
[Submitted on 30 Jan 2024]
Title:PlantoGraphy: Incorporating Iterative Design Process into Generative Artificial Intelligence for Landscape Rendering
View PDFAbstract:Landscape renderings are realistic images of landscape sites, allowing stakeholders to perceive better and evaluate design ideas. While recent advances in Generative Artificial Intelligence (GAI) enable automated generation of landscape renderings, the end-to-end methods are not compatible with common design processes, leading to insufficient alignment with design idealizations and limited cohesion of iterative landscape design. Informed by a formative study for comprehending design requirements, we present PlantoGraphy, an iterative design system that allows for interactive configuration of GAI models to accommodate human-centered design practice. A two-stage pipeline is incorporated: first, concretization module transforms conceptual ideas into concrete scene layouts with a domain-oriented large language model; and second, illustration module converts scene layouts into realistic landscape renderings using a fine-tuned low-rank adaptation diffusion model. PlantoGraphy has undergone a series of performance evaluations and user studies, demonstrating its effectiveness in landscape rendering generation and the high recognition of its interactive functionality.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.