Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Feb 2024]
Title:DMAT: A Dynamic Mask-Aware Transformer for Human De-occlusion
View PDFAbstract:Human de-occlusion, which aims to infer the appearance of invisible human parts from an occluded image, has great value in many human-related tasks, such as person re-id, and intention inference. To address this task, this paper proposes a dynamic mask-aware transformer (DMAT), which dynamically augments information from human regions and weakens that from occlusion. First, to enhance token representation, we design an expanded convolution head with enlarged kernels, which captures more local valid context and mitigates the influence of surrounding occlusion. To concentrate on the visible human parts, we propose a novel dynamic multi-head human-mask guided attention mechanism through integrating multiple masks, which can prevent the de-occluded regions from assimilating to the background. Besides, a region upsampling strategy is utilized to alleviate the impact of occlusion on interpolated images. During model learning, an amodal loss is developed to further emphasize the recovery effect of human regions, which also refines the model's convergence. Extensive experiments on the AHP dataset demonstrate its superior performance compared to recent state-of-the-art methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.