Electrical Engineering and Systems Science > Signal Processing
[Submitted on 8 Feb 2024]
Title:A Novel Approach to WaveNet Architecture for RF Signal Separation with Learnable Dilation and Data Augmentation
View PDF HTML (experimental)Abstract:In this paper, we address the intricate issue of RF signal separation by presenting a novel adaptation of the WaveNet architecture that introduces learnable dilation parameters, significantly enhancing signal separation in dense RF spectrums. Our focused architectural refinements and innovative data augmentation strategies have markedly improved the model's ability to discern complex signal sources. This paper details our comprehensive methodology, including the refined model architecture, data preparation techniques, and the strategic training strategy that have been pivotal to our success. The efficacy of our approach is evidenced by the substantial improvements recorded: a 58.82\% increase in SINR at a BER of $10^{-3}$ for OFDM-QPSK with EMI Signal 1, surpassing traditional benchmarks. Notably, our model achieved first place in the challenge \cite{datadrivenrf2024}, demonstrating its superior performance and establishing a new standard for machine learning applications within the RF communications domain.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.