Quantum Physics
[Submitted on 4 Mar 2024 (v1), last revised 5 Nov 2024 (this version, v2)]
Title:PDQMA = DQMA = NEXP: QMA With Hidden Variables and Non-collapsing Measurements
View PDF HTML (experimental)Abstract:We define and study a variant of QMA (Quantum Merlin Arthur) in which Arthur can make multiple non-collapsing measurements to Merlin's witness state, in addition to ordinary collapsing measurements. By analogy to the class PDQP defined by Aaronson, Bouland, Fitzsimons, and Lee (2014), we call this class PDQMA. Our main result is that PDQMA = NEXP; this result builds on the PCP theorem and complements the result of Aaronson (2018) that PDQP/qpoly = ALL. While the result has little to do with quantum mechanics, we also show a more "quantum" result: namely, that QMA with the ability to inspect the entire history of a hidden variable is equal to NEXP, under mild assumptions on the hidden-variable theory. We also observe that a quantum computer, augmented with quantum advice and the ability to inspect the history of a hidden variable, can solve any decision problem in polynomial time.
Submission history
From: Sabee Grewal [view email][v1] Mon, 4 Mar 2024 23:36:05 UTC (17 KB)
[v2] Tue, 5 Nov 2024 00:58:51 UTC (21 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.