Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Mar 2024]
Title:Region-aware Distribution Contrast: A Novel Approach to Multi-Task Partially Supervised Learning
View PDF HTML (experimental)Abstract:In this study, we address the intricate challenge of multi-task dense prediction, encompassing tasks such as semantic segmentation, depth estimation, and surface normal estimation, particularly when dealing with partially annotated data (MTPSL). The complexity arises from the absence of complete task labels for each training image. Given the inter-related nature of these pixel-wise dense tasks, our focus is on mining and capturing cross-task relationships. Existing solutions typically rely on learning global image representations for global cross-task image matching, imposing constraints that, unfortunately, sacrifice the finer structures within the images. Attempting local matching as a remedy faces hurdles due to the lack of precise region supervision, making local alignment a challenging endeavor. The introduction of Segment Anything Model (SAM) sheds light on addressing local alignment challenges by providing free and high-quality solutions for region detection. Leveraging SAM-detected regions, the subsequent challenge lies in aligning the representations within these regions. Diverging from conventional methods that directly learn a monolithic image representation, our proposal involves modeling region-wise representations using Gaussian Distributions. Aligning these distributions between corresponding regions from different tasks imparts higher flexibility and capacity to capture intra-region structures, accommodating a broader range of tasks. This innovative approach significantly enhances our ability to effectively capture cross-task relationships, resulting in improved overall performance in partially supervised multi-task dense prediction scenarios. Extensive experiments conducted on two widely used benchmarks underscore the superior effectiveness of our proposed method, showcasing state-of-the-art performance even when compared to fully supervised methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.