Computer Science > Machine Learning
[Submitted on 29 Mar 2024]
Title:Enhancing Dimension-Reduced Scatter Plots with Class and Feature Centroids
View PDF HTML (experimental)Abstract:Dimension reduction is increasingly applied to high-dimensional biomedical data to improve its interpretability. When datasets are reduced to two dimensions, each observation is assigned an x and y coordinates and is represented as a point on a scatter plot. A significant challenge lies in interpreting the meaning of the x and y axes due to the complexities inherent in dimension reduction. This study addresses this challenge by using the x and y coordinates derived from dimension reduction to calculate class and feature centroids, which can be overlaid onto the scatter plots. This method connects the low-dimension space to the original high-dimensional space. We illustrate the utility of this approach with data derived from the phenotypes of three neurogenetic diseases and demonstrate how the addition of class and feature centroids increases the interpretability of scatter plots.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.