Computer Science > Discrete Mathematics
[Submitted on 25 Apr 2024 (v1), last revised 5 Jun 2024 (this version, v2)]
Title:Computing Hamiltonian Paths with Partial Order Restrictions
View PDF HTML (experimental)Abstract:When solving the Hamiltonian path problem it seems natural to be given additional precedence constraints for the order in which the vertices are visited. For example one could decide whether a Hamiltonian path exists for a fixed starting point, or that some vertices are visited before another vertex. We consider the problem of finding a Hamiltonian path that observes all precedence constraints given in a partial order on the vertex set. We show that this problem is $\mathsf{NP}$-complete even if restricted to complete bipartite graphs and posets of height 2. In contrast, for posets of width $k$ there is an $\mathcal{O}(k^2 n^k)$ algorithm for arbitrary graphs with $n$ vertices. We show that it is unlikely that the running time of this algorithm can be improved significantly, i.e., there is no $f(k) n^{o(k)}$ time algorithm under the assumption of the Exponential Time Hypothesis. Furthermore, for the class of outerplanar graphs, we give an $\mathcal{O}(n^2)$ algorithm for arbitrary posets.
Submission history
From: Robert Scheffler [view email][v1] Thu, 25 Apr 2024 15:00:34 UTC (118 KB)
[v2] Wed, 5 Jun 2024 09:39:58 UTC (120 KB)
Current browse context:
cs.DM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.