Mathematics > Numerical Analysis
[Submitted on 27 Apr 2024 (v1), last revised 23 Jan 2025 (this version, v2)]
Title:Efficient Shallow Ritz Method For 1D Diffusion Problems
View PDF HTML (experimental)Abstract:This paper studies the shallow Ritz method for solving the one-dimensional diffusion problem. It is shown that the shallow Ritz method improves the order of approximation dramatically for non-smooth problems. To realize this optimal or nearly optimal order of the shallow Ritz approximation, we develop a damped block Newton (dBN) method that alternates between updates of the linear and non-linear parameters. Per each iteration, the linear and the non-linear parameters are updated by exact inversion and one step of a modified, damped Newton method applied to a reduced non-linear system, respectively. The computational cost of each dBN iteration is $O(n)$.
Starting with the non-linear parameters as a uniform partition of the interval, numerical experiments show that the dBN is capable of efficiently moving mesh points to nearly optimal locations. To improve efficiency of the dBN further, we propose an adaptive damped block Newton (AdBN) method by combining the dBN with the adaptive neuron enhancement (ANE) method [26].
Submission history
From: César Herrera [view email][v1] Sat, 27 Apr 2024 01:39:50 UTC (625 KB)
[v2] Thu, 23 Jan 2025 17:08:53 UTC (1,145 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.