Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 May 2024]
Title:Single Image Super-Resolution Based on Global-Local Information Synergy
View PDF HTML (experimental)Abstract:Although several image super-resolution solutions exist, they still face many challenges. CNN-based algorithms, despite the reduction in computational complexity, still need to improve their accuracy. While Transformer-based algorithms have higher accuracy, their ultra-high computational complexity makes them difficult to be accepted in practical applications. To overcome the existing challenges, a novel super-resolution reconstruction algorithm is proposed in this paper. The algorithm achieves a significant increase in accuracy through a unique design while maintaining a low complexity. The core of the algorithm lies in its cleverly designed Global-Local Information Extraction Module and Basic Block Module. By combining global and local information, the Global-Local Information Extraction Module aims to understand the image content more comprehensively so as to recover the global structure and local details in the image more accurately, which provides rich information support for the subsequent reconstruction process. Experimental results show that the comprehensive performance of the algorithm proposed in this paper is optimal, providing an efficient and practical new solution in the field of super-resolution reconstruction.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.