Computer Science > Emerging Technologies
[Submitted on 11 May 2024]
Title:On User Association in Large-Scale Heterogeneous LEO Satellite Network
View PDF HTML (experimental)Abstract:In this paper, we investigate the performance of large-scale heterogeneous low Earth orbit (LEO) satellite networks in the context of three association schemes. In contrast to existing studies, where single-tier LEO satellite-based network deployments are considered, the developed framework captures the heterogeneous nature of real-world satellite network deployments. More specifically, we propose an analytical framework to evaluate the performance of multi-tier LEO satellite-based networks, where the locations of LEO satellites are approximated as points of independent Poisson point processes, with different density, transmit power, and altitude. We propose three association schemes for the considered network topology based on: 1) the Euclidean distance, 2) the average received power, and 3) a random selection. By using stochastic geometry tools, analytical expressions for the association probability, the downlink coverage probability, as well as the spectral efficiency are derived for each association scheme, where the interference is considered. Moreover, we assess the achieved network performance under several different fading environments, including low, typical, and severe fading conditions, namely non-fading, shadowed-Rician and Rayleigh fading channels, respectively. Our results reveal the impact of fading channels on the coverage probability, and illustrate that the average power-based association scheme outperforms in terms of achieved coverage and spectral efficiency performance against the other two association policies. Furthermore, we highlight the impact of the proposed association schemes and the network topology on the optimal number of LEO satellites, providing guidance for the planning of multi-tier LEO satellite-based networks in order to enhance network performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.