Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 May 2024]
Title:FeTT: Continual Class Incremental Learning via Feature Transformation Tuning
View PDF HTML (experimental)Abstract:Continual learning (CL) aims to extend deep models from static and enclosed environments to dynamic and complex scenarios, enabling systems to continuously acquire new knowledge of novel categories without forgetting previously learned knowledge. Recent CL models have gradually shifted towards the utilization of pre-trained models (PTMs) with parameter-efficient fine-tuning (PEFT) strategies. However, continual fine-tuning still presents a serious challenge of catastrophic forgetting due to the absence of previous task data. Additionally, the fine-tune-then-frozen mechanism suffers from performance limitations due to feature channels suppression and insufficient training data in the first CL task. To this end, this paper proposes feature transformation tuning (FeTT) model to non-parametrically fine-tune backbone features across all tasks, which not only operates independently of CL training data but also smooths feature channels to prevent excessive suppression. Then, the extended ensemble strategy incorporating different PTMs with FeTT model facilitates further performance improvement. We further elaborate on the discussions of the fine-tune-then-frozen paradigm and the FeTT model from the perspectives of discrepancy in class marginal distributions and feature channels. Extensive experiments on CL benchmarks validate the effectiveness of our proposed method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.