Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Jun 2024 (v1), last revised 12 Dec 2024 (this version, v2)]
Title:LLAVIDAL: A Large LAnguage VIsion Model for Daily Activities of Living
View PDF HTML (experimental)Abstract:Current Large Language Vision Models (LLVMs) trained on web videos perform well in general video understanding but struggle with fine-grained details, complex human-object interactions (HOI), and view-invariant representation learning essential for Activities of Daily Living (ADL). This limitation stems from a lack of specialized ADL video instruction-tuning datasets and insufficient modality integration to capture discriminative action representations. To address this, we propose a semi-automated framework for curating ADL datasets, creating ADL-X, a multiview, multimodal RGBS instruction-tuning dataset. Additionally, we introduce LLAVIDAL, an LLVM integrating videos, 3D skeletons, and HOIs to model ADL's complex spatiotemporal relationships. For training LLAVIDAL a simple joint alignment of all modalities yields suboptimal results; thus, we propose a Multimodal Progressive (MMPro) training strategy, incorporating modalities in stages following a curriculum. We also establish ADL MCQ and video description benchmarks to assess LLVM performance in ADL tasks. Trained on ADL-X, LLAVIDAL achieves state-of-the-art performance across ADL benchmarks. Code and data will be made publicly available at: this https URL.
Submission history
From: Dominick Reilly [view email][v1] Thu, 13 Jun 2024 17:59:05 UTC (11,685 KB)
[v2] Thu, 12 Dec 2024 18:58:34 UTC (2,599 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.