Mathematics > Numerical Analysis
[Submitted on 4 Jul 2024]
Title:Parallel-in-time solution of hyperbolic PDE systems via characteristic-variable block preconditioning
View PDF HTML (experimental)Abstract:We consider the parallel-in-time solution of hyperbolic partial differential equation (PDE) systems in one spatial dimension, both linear and nonlinear. In the nonlinear setting, the discretized equations are solved with a preconditioned residual iteration based on a global linearization. The linear(ized) equation systems are approximately solved parallel-in-time using a block preconditioner applied in the characteristic variables of the underlying linear(ized) hyperbolic PDE. This change of variables is motivated by the observation that inter-variable coupling for characteristic variables is weak relative to intra-variable coupling, at least locally where spatio-temporal variations in the eigenvectors of the associated flux Jacobian are sufficiently small. For an $\ell$-dimensional system of PDEs, applying the preconditioner consists of solving a sequence of $\ell$ scalar linear(ized)-advection-like problems, each being associated with a different characteristic wave-speed in the underlying linear(ized) PDE. We approximately solve these linear advection problems using multigrid reduction-in-time (MGRIT); however, any other suitable parallel-in-time method could be used. Numerical examples are shown for the (linear) acoustics equations in heterogeneous media, and for the (nonlinear) shallow water equations and Euler equations of gas dynamics with shocks and rarefactions.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.