Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Jul 2024]
Title:SMPISD-MTPNet: Scene Semantic Prior-Assisted Infrared Ship Detection Using Multi-Task Perception Networks
View PDFAbstract:Infrared ship detection (IRSD) has received increasing attention in recent years due to the robustness of infrared images to adverse weather. However, a large number of false alarms may occur in complex scenes. To address these challenges, we propose the Scene Semantic Prior-Assisted Multi-Task Perception Network (SMPISD-MTPNet), which includes three stages: scene semantic extraction, deep feature extraction, and prediction. In the scene semantic extraction stage, we employ a Scene Semantic Extractor (SSE) to guide the network by the features extracted based on expert knowledge. In the deep feature extraction stage, a backbone network is employed to extract deep features. These features are subsequently integrated by a fusion network, enhancing the detection capabilities across targets of varying sizes. In the prediction stage, we utilize the Multi-Task Perception Module, which includes the Gradient-based Module and the Scene Segmentation Module, enabling precise detection of small and dim targets within complex scenes. For the training process, we introduce the Soft Fine-tuning training strategy to suppress the distortion caused by data augmentation. Besides, due to the lack of a publicly available dataset labelled for scenes, we introduce the Infrared Ship Dataset with Scene Segmentation (IRSDSS). Finally, we evaluate the network and compare it with state-of-the-art (SOTA) methods, indicating that SMPISD-MTPNet outperforms existing approaches. The source code and dataset for this research can be accessed at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.