Computer Science > Machine Learning
[Submitted on 8 Aug 2024 (v1), last revised 7 Nov 2024 (this version, v2)]
Title:Optimization-Driven Adaptive Experimentation
View PDF HTML (experimental)Abstract:Real-world experiments involve batched & delayed feedback, non-stationarity, multiple objectives & constraints, and (often some) personalization. Tailoring adaptive methods to address these challenges on a per-problem basis is infeasible, and static designs remain the de facto standard. Focusing on short-horizon ($\le 10$) adaptive experiments, we move away from bespoke algorithms and present a mathematical programming formulation that can flexibly incorporate a wide range of objectives, constraints, and statistical procedures. We formulating a dynamic program based on central limit approximations, which enables the use of scalable optimization methods based on auto-differentiation and GPU parallelization. To evaluate our framework, we implement a simple heuristic planning method ("solver") and benchmark it across hundreds of problem instances involving non-stationarity, personalization, and multiple objectives & constraints. Unlike bespoke methods (e.g., Thompson sampling variants), our mathematical programming framework provides consistent gains over static randomized control trials and exhibits robust performance across problem instances.
Submission history
From: Ethan Che [view email][v1] Thu, 8 Aug 2024 16:29:09 UTC (7,857 KB)
[v2] Thu, 7 Nov 2024 22:15:01 UTC (8,079 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.