Computer Science > Machine Learning
[Submitted on 14 Aug 2024]
Title:Graph neural network surrogate for strategic transport planning
View PDF HTML (experimental)Abstract:As the complexities of urban environments continue to grow, the modelling of transportation systems become increasingly challenging. This paper explores the application of advanced Graph Neural Network (GNN) architectures as surrogate models for strategic transport planning. Building upon a prior work that laid the foundation with graph convolution networks (GCN), our study delves into the comparative analysis of established GCN with the more expressive Graph Attention Network (GAT). Additionally, we propose a novel GAT variant (namely GATv3) to address over-smoothing issues in graph-based models. Our investigation also includes the exploration of a hybrid model combining both GCN and GAT architectures, aiming to investigate the performance of the mixture. The three models are applied to various experiments to understand their limits. We analyse hierarchical regression setups, combining classification and regression tasks, and introduce fine-grained classification with a proposal of a method to convert outputs to precise values. Results reveal the superior performance of the new GAT in classification tasks. To the best of the authors' knowledge, this is the first GAT model in literature to achieve larger depths. Surprisingly, the fine-grained classification task demonstrates the GCN's unexpected dominance with additional training data. This shows that synthetic data generators can increase the training data, without overfitting issues whilst improving model performance. In conclusion, this research advances GNN based surrogate modelling, providing insights for refining GNN architectures. The findings open avenues for investigating the potential of the newly proposed GAT architecture and the modelling setups for other transportation problems.
Submission history
From: Santhanakrishnan Narayanan [view email][v1] Wed, 14 Aug 2024 14:18:47 UTC (943 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.