Computer Science > Machine Learning
[Submitted on 6 Sep 2024 (v1), last revised 13 Oct 2024 (this version, v3)]
Title:AttentionX: Exploiting Consensus Discrepancy In Attention from A Distributed Optimization Perspective
View PDF HTML (experimental)Abstract:In this paper, we extend the standard Attention in transformer by exploiting the consensus discrepancy from a distributed optimization perspective, referred to as AttentionX. It is noted that the primal-dual method of multipliers (PDMM) \cite{Zhang16PDMM} is designed to iteratively solve a broad class of distributed optimization problems over a pear-to-pear (P2P) network, where neighbouring nodes gradually reach consensus as specified by predefined linear edge-constraints in the optimization process. In particular, at each iteration of PDMM, each node in a network first performs information-gathering from neighbours and then performs local information-fusion. From a high-level point of view, the $KQ$-softmax-based weighted summation of $V$-representations in Attention corresponds information-gathering from neighbours while the feature-processing via the feed-forward network (FFN) in transformer corresponds to local information fusion. PDMM exploits the Lagrangian multipliers to capture the historical consensus discrepancy in the form of residual errors of the linear edge-constraints, which plays a crucial role for the algorithm to converge. Inspired by PDMM, we propose AttentionX to incorporate the consensus discrepancy in the output update-expression of the standard Attention. The consensus discrepancy in AttentionX refers to the difference between the weighted summation of $V$-representations and scaled $V$-representions themselves. Experiments on ViT and nanoGPT show promising performance.
Submission history
From: Guoqiang Zhang [view email][v1] Fri, 6 Sep 2024 13:37:08 UTC (29 KB)
[v2] Mon, 9 Sep 2024 13:51:57 UTC (31 KB)
[v3] Sun, 13 Oct 2024 09:32:21 UTC (32 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.