Computer Science > Artificial Intelligence
[Submitted on 22 Oct 2024]
Title:Privacy-hardened and hallucination-resistant synthetic data generation with logic-solvers
View PDFAbstract:Machine-generated data is a valuable resource for training Artificial Intelligence algorithms, evaluating rare workflows, and sharing data under stricter data legislations. The challenge is to generate data that is accurate and private. Current statistical and deep learning methods struggle with large data volumes, are prone to hallucinating scenarios incompatible with reality, and seldom quantify privacy meaningfully. Here we introduce Genomator, a logic solving approach (SAT solving), which efficiently produces private and realistic representations of the original data. We demonstrate the method on genomic data, which arguably is the most complex and private information. Synthetic genomes hold great potential for balancing underrepresented populations in medical research and advancing global data exchange. We benchmark Genomator against state-of-the-art methodologies (Markov generation, Restricted Boltzmann Machine, Generative Adversarial Network and Conditional Restricted Boltzmann Machines), demonstrating an 84-93% accuracy improvement and 95-98% higher privacy. Genomator is also 1000-1600 times more efficient, making it the only tested method that scales to whole genomes. We show the universal trade-off between privacy and accuracy, and use Genomator's tuning capability to cater to all applications along the spectrum, from provable private representations of sensitive cohorts, to datasets with indistinguishable pharmacogenomic profiles. Demonstrating the production-scale generation of tuneable synthetic data can increase trust and pave the way into the clinic.
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.