Computer Science > Software Engineering
[Submitted on 7 Nov 2024]
Title:Feature Importance in the Context of Traditional and Just-In-Time Software Defect Prediction Models
View PDFAbstract:Software defect prediction models can assist software testing initiatives by prioritizing testing error-prone modules. In recent years, in addition to the traditional defect prediction model approach of predicting defects from class, modules, etc., Just-In-Time defect prediction research, which focuses on the change history of software products is getting prominent. For building these defect prediction models, it is important to understand which features are primary contributors to these classifiers. This study considered developing defect prediction models incorporating the traditional and the Just-In-Time approaches from the publicly available dataset of the Apache Camel project. A multi-layer deep learning algorithm was applied to these datasets in comparison with machine learning algorithms. The deep learning algorithm achieved accuracies of 80% and 86%, with the area under receiving operator curve (AUC) scores of 66% and 78% for traditional and Just-In-Time defect prediction, respectively. Finally, the feature importance of these models was identified using a model-specific integrated gradient method and a model-agnostic Shapley Additive Explanation (SHAP) technique.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.