Computer Science > Information Retrieval
[Submitted on 17 Nov 2024]
Title:Leveraging Large Language Models for Generating Labeled Mineral Site Record Linkage Data
View PDF HTML (experimental)Abstract:Record linkage integrates diverse data sources by identifying records that refer to the same entity. In the context of mineral site records, accurate record linkage is crucial for identifying and mapping mineral deposits. Properly linking records that refer to the same mineral deposit helps define the spatial coverage of mineral areas, benefiting resource identification and site data archiving. Mineral site record linkage falls under the spatial record linkage category since the records contain information about the physical locations and non-spatial attributes in a tabular format. The task is particularly challenging due to the heterogeneity and vast scale of the data. While prior research employs pre-trained discriminative language models (PLMs) on spatial entity linkage, they often require substantial amounts of curated ground-truth data for fine-tuning. Gathering and creating ground truth data is both time-consuming and costly. Therefore, such approaches are not always feasible in real-world scenarios where gold-standard data are unavailable. Although large generative language models (LLMs) have shown promising results in various natural language processing tasks, including record linkage, their high inference time and resource demand present challenges. We propose a method that leverages an LLM to generate training data and fine-tune a PLM to address the training data gap while preserving the efficiency of PLMs. Our approach achieves over 45\% improvement in F1 score for record linkage compared to traditional PLM-based methods using ground truth data while reducing the inference time by nearly 18 times compared to relying on LLMs. Additionally, we offer an automated pipeline that eliminates the need for human intervention, highlighting this approach's potential to overcome record linkage challenges.
Current browse context:
cs.IR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.