Filters
Results 1 - 10 of 54
Results 1 - 10 of 54.
Search took: 0.028 seconds
Sort by: date | relevance |
AbstractAbstract
[en] A multichannel millimeter-wave interferometer system has been designed, fabricated and installed on the helically symmetric experiment (HSX), located at the University of Wisconsin, Madison. The interferometer system will view the plasma cross section along nine adjacent chords with 1.5 cm spacing. With this arrangement, coverage will span from the low-field side plasma scrape-off layer to well past the magnetic axis. For the plasma densities anticipated on HSX, a solid-state source operating at 288 GHz will be utilized. At this frequency refraction will be manageable, being less than the channel spacing. The source will be bias-tuned and modulated with a sawtooth wave form at 750 kHz in order to generate the intermediate frequency necessary for the heterodyne detection scheme. The signals will be measured using Schottky-diode corner-cube mixers. The interferometer will have sensitivity nedl∼8x1011cm-2, being able to measure density changes <1%. Initially, the phase will be evaluated using analog electronics with bandwidth <10 kHz providing real-time line-integrated output. A digital phase comparator scheme will also be implemented whereby the measured wave forms are directly digitized and the phase evaluated using a software-based algorithm. This will increase the time response up to the modulation frequency of 750 kHz. Improved time response will permit measurement of high-frequency density fluctuations along with ''fast changes in'' the equilibrium profile
Primary Subject
Source
Othernumber: RSINAK000072000001001081000001; 597101CON; The American Physical Society
Record Type
Journal Article
Journal
Review of Scientific Instruments; ISSN 0034-6748; ; v. 72(1); p. 1081-1084
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] The multichannel interferometer system on the helically symmetric experiment (HSX) stellarator is reconfigured to perform far-forward collective scattering measurements of electron density fluctuations. The collective scattering system has nine viewing chords with 1.5 cm spacing. Scattered power is measured using a homodyne detection scheme. Far-forward collective scattering provides a line-integrated measurement of fluctuations within the divergence of the probe beam covering wavenumber range: kperpendicular<2 cm-1. The perpendicular wavenumber consists of poloidal and radial contributions that vary with chord position. Both coherent modes and broadband fluctuation are measured. When HSX is operated without quasihelical symmetry at BT=1 T and ne∼4x1012 cm-3, a coherent electrostatic fluctuation is observed.
Primary Subject
Secondary Subject
Source
(c) 2010 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] The interferometer system on the Helically Symmetric eXperiment (HSX) stellarator uses an expanded beam and linear detector array to realize a multichord measurement. Unlike conventional interferometry which determines the plasma phase shift with respect to a reference, directly evaluating the phase between two adjacent chords can be employed to measure the change in plasma phase with impact parameter. This approach provides a measure of the equilibrium density gradient or the density gradient fluctuations and is referred to as differential interferometry. For central chords, measurements are spatially localized due to a geometrical weighting factor and can provide information on core density gradient fluctuations. The measurement requires finite coherence between fluctuations in the two spatially offset chords. This technique is applied on the HSX stellarator to measure both broadband turbulence and coherent modes. Spatial localization is exploited to isolate core turbulence changes associated with change in magnetic configuration or heating location.
Primary Subject
Secondary Subject
Source
(c) 2012 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] In the harsh environment of the divertor region in ITER, plasmas spanning a huge density range from 1019 to 1022 m-3 are anticipated making measurement of the electron density particularly challenging. For any reasonable wavelength choice, the total phase measured by a conventional two-color interferometer system is always >>2π and therefore subject to fringe counting errors. This problem can be remedied by adding a polarimeter capability whereby the Cotton-Mouton effect is measured or by employing differential interferometry. Using either approach, the total phase is always <<2π. The conceptual design of an interferometer system along with possible wavelength choices will be explored
Primary Subject
Source
(c) 2006 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Electron cyclotron emission imaging (ECE imaging or ECEI) is a novel plasma diagnostic technique for the study of electron temperature profiles and fluctuations in magnetic fusion plasma devices. Instead of a single receiver located in the tokamak midplane as in conventional ECE radiometers, ECEI systems utilize large diameter imaging optics coupled with planar millimeter-wave imaging arrays to form multichannel ECE diagnostics with excellent spatial resolution. Combined with specially designed imaging optics, the use of these compact, low cost arrays has resulted in the excellent spatial resolution of the ECEI systems, the unique capability of two-dimensional measurements, and flexibility in the measurement of plasma fluctuations. Technical details and principles of this emerging diagnostic technique are described in this article. Illustrative experimental results are presented, together with a discussion of the further development of the diagnostic
Primary Subject
Source
Othernumber: RSINAK000072000001000301000001; 622101CON; The American Physical Society
Record Type
Journal Article
Journal
Review of Scientific Instruments; ISSN 0034-6748; ; v. 72(1); p. 301-306
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Magnetic field fluctuation-induced particle transport has been directly measured in the high-temperature core of the MST reversed field pinch plasma. Measurement of radial particle transport is achieved by combining various interferometry techniques, including Faraday rotation, conventional interferometry, and differential interferometry. It is observed that electron convective particle flux and its divergence exhibit a significant increase during a sawtooth crash. In this paper, we describe the basic techniques employed to determine the particle flux.
Primary Subject
Secondary Subject
Source
(c) 2008 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] A novel differential interferometer is being developed to measure the electron density gradient and its fluctuations. Two separate laser beams with slight spatial offset and frequency difference are coupled into a single mixer making a heterodyne measurement of the phase difference which is <1% of the total phase change experienced by each beam separately. This measure of the differential phase is made at multiple spatial points and can be inverted directly to provide the local density distribution
Primary Subject
Source
(c) 2006 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Differential interferometry employs two parallel laser beams with a small spatial offset (less than beam width) and frequency difference (1-2 MHz) using common optics and a single mixer for a heterodyne detection. The differential approach allows measurement of the electron density gradient, its fluctuations, as well as the equilibrium density distribution. This novel interferometry technique is immune to fringe skip errors and is particularly useful in harsh plasma environments. Accurate calibration of the beam spatial offset, accomplished by use of a rotating dielectric wedge, is required to enable broad application of this approach. Differential interferometry has been successfully used on the Madison Symmetric Torus reversed-field pinch plasma to directly measure fluctuation-induced transport along with equilibrium density profile evolution during pellet injection. In addition, by combining differential and conventional interferometry, both linear and nonlinear terms of the electron density fluctuation energy equation can be determined, thereby allowing quantitative investigation of the origin of the density fluctuations. The concept, calibration, and application of differential interferometry are presented.
Primary Subject
Secondary Subject
Source
(c) 2010 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] A recent study conducted on the Madison Symmetric Torus reversed-field pinch has shown that control of density fluctuations can be achieved through modification of the current density profile. Most of the power in the density fluctuations is directly associated with core-resonant resistive tearing modes. We report that, during auxiliary current drive experiments, these density fluctuations are reduced about an order of magnitude over the entire plasma cross section and the resulting electron confinement is increased eightfold. (c) 2000 The American Physical Society
Primary Subject
Record Type
Journal Article
Literature Type
Numerical Data
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Fluctuations are expected to play an important role in anomalous particle, momentum, and energy transport for magnetic confinement devices. Magnetic and density fluctuations are simultaneously measured using a high-speed laser-based Faraday rotation-interferometry system with a bandwidth of 500 kHz and 8 cm chord spacing. Density fluctuation and magnetic fluctuation profiles are obtained by using a newly developed fitting procedure.
Primary Subject
Secondary Subject
Source
(c) 2008 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
1 | 2 | 3 | Next |