Fred Dahlgren; Art Brooks; Paul Goranson; Mike Cole; Peter Titus
Princeton Plasma Physics Lab., Princeton, NJ (United States). Funding organisation: USDOE Office of Science (United States)2004
Princeton Plasma Physics Lab., Princeton, NJ (United States). Funding organisation: USDOE Office of Science (United States)2004
AbstractAbstract
[en] The NCSX (National Compact Stellarator Experiment) vacuum vessel has a rather unique shape being very closely coupled topologically to the three-fold stellarator symmetry of the plasma it contains. This shape does not permit the use of the common forms of pressure vessel analysis and necessitates the reliance on finite element analysis. The current paper describes the NCSX vacuum vessel stress analysis including external pressure, thermal, and electro-magnetic loading from internal plasma disruptions and bakeout temperatures of up to 400 degrees centigrade. Buckling and dynamic loading conditions are also considered
Primary Subject
Source
28 Sep 2004; 10 p; AC02-76CH03073; Also available from OSTI as DE00835923; PURL: https://www.osti.gov/servlets/purl/835923-OjobpI/native/
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Ilan Ben-Zvi; A. Burrill; R. Calaga; P. Cameron; X. Chang; D. Gassner; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; Vladimir N. Litvinenko; G. McIntyre; A. Nicoletti; J. Rank; T. Roser; J. Scaduto; K. Smith; T. Srinivasan-Rao; K.-C. Wu; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; Mike Cole; A. Favale; D. Holmes; John Rathke; Tom Schultheiss; A. Todd; J. Delayen; W. Funk; L. Phillips; Joe Preble
Thomas Jefferson National Accelerator Facility, Newport News, VA (United States). Funding organisation: USDOE Office of Energy Research (ER) (United States)2004
Thomas Jefferson National Accelerator Facility, Newport News, VA (United States). Funding organisation: USDOE Office of Energy Research (ER) (United States)2004
AbstractAbstract
[en] High-power Free-Electron Lasers were made possible by advances in superconducting linac operated in an energy-recovery mode, as demonstrated by the spectacular success of the Jefferson Laboratory IR-Demo. In order to get to much higher power levels, say a fraction of a megawatt average power, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for a different application, that of electron cooling of high-energy hadron beams. I will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun employing a new secondary-emission multiplying cathode and an accelerator cavity, both capable of producing of the order of one ampere average current
Primary Subject
Source
1 Aug 2004; 931.3 Kilobytes; FEL 2004; Trieste (Italy); 29 Aug 2004; DOE/ER--40150-3472; AC05-84ER40150; Available from PURL: https://www.osti.gov/servlets/purl/841442-1bPsOt/native/
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Vladimir N. Litvinenko; Donald Barton; D. Beavis; Ilan Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X. Chang; Roger Connolly; D. Gassner; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; G. McIntyre; W. Meng; T. C. Nehring; A. Nicoletti; D. Pate; J. Rank; T. Roser; T. Russo; J. Scaduto; K. Smith; T. Srinivasan-Rao; N. Williams; K.-C. Wu; Vitaly Yakimenko; K. Yip; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; Mike Cole; A. Favale; D. Holmes; John Rathke; Tom Schultheiss; A. Todd; J. Delayen; W. Funk; L. Phillips; Joe Preble
Thomas Jefferson National Accelerator Facility, Newport News, VA (United States). Funding organisation: USDOE Office of Energy Research (ER) (United States)2004
Thomas Jefferson National Accelerator Facility, Newport News, VA (United States). Funding organisation: USDOE Office of Energy Research (ER) (United States)2004
AbstractAbstract
[en] We present the design, the parameters of a small test Energy Recovery Linac (ERL) facility, which is under construction at Collider-Accelerator Department, BNL. This R and D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. A possibility for future up-grade to a two-pass ERL is considered. The heart of the facility is a 5-cell 700 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. ERL is also perfectly suited for a far-IR FEL. We present the status and our plans for construction and commissioning of this facility
Primary Subject
Source
1 Aug 2004; 1070 Kilobytes; FEL 2004; Trieste (Italy); 29 Aug 2004; DOE/ER--40150-3473; AC05-84ER40150; Available from PURL: https://www.osti.gov/servlets/purl/841443-1bPsOt/native/
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue