AbstractAbstract
[en] Purpose: Treatment planning for Head and Neck(HN) re-irradiation is a challenge because of ablative doses to target volume and strict critical structure constraints. PlanIQ(Sun Nuclear Corporation) can assess the feasibility of clinical goals and quantitatively measure plan quality. Here, we assess whether incorporation of PlanIQ in our SBRT treatment planning process can improve plan quality and planning efficiency. Methods: From 2013–2015, 35 patients (29 retrospective, 6 prospective) with recurrent HN tumors were treated with SBRT using VMAT treatment plans. The median prescription dose was 45 Gy in 5 fractions. We retrospectively reviewed the treatment plans and physician directives of our first 29 patients and generated score functions of the dosimetric goals used in our practice and obtained a baseline histogram. We then re-optimized 12 plans that had potential to further reduce organs-at-risk (OAR) doses according to PlanIQ feasibility DVH and plan quality analysis and compared them to the original plans. We applied our new PlanIQ-assisted planning process for our 6 most recently treated patients and evaluated the plan quality and planning efficiency. Results: The mean plan quality metric(PQM) and feasibility adjusted PQM(APQM) scores of our initial 29 treatment plans were 77.1±13.1 and 88.7±11.9, respectively (0–100 scale). The PQM and APQM scores for the 12 optimized plans improved from 75.9±11.0 and 85.1±10.2 to 80.7±9.3 and 90.2±8.0, respectively (p<0.005). Using our newly developed PlanIQ-assisted planning process, the PQM and APQM scores for the 6 most recently treated patients were 93.6±6.5 and 99.1±0.6, respectively. The planning goals were more straightforward to minimize OAR doses during optimization, thus less planning and revision time were used than before. Conclusion: PlanIQ has the potential to provide achievable planning goals and also improve plan quality and planning efficiency.
Primary Subject
Secondary Subject
Source
(c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Purpose: Multi-field optimization intensity modulated proton therapy (MFO-IMPT) for oropharyngeal tumors has been established using robust planning, robust analysis, and robust optimization techniques. While there are inherent uncertainties in proton therapy treatment planning and delivery, outcome reporting are important to validate the proton treatment process. The purpose of this study is to report the first 50 oropharyngeal tumor patients treated de-novo at a single institution with MFO-IMPT. Methods: The data from the first 50 patients with squamous cell carcinoma of the oropharynx treated at MD Anderson Cancer Center from January 2011 to December 2014 on a prospective IRB approved protocol were analyzed. Outcomes were analyzed to include local, regional, and distant treatment failures. Acute and late toxicities were analyzed by CTCAE v4.0. Results: All patients were treated with definitive intent. The median follow-up time of the 50 patients was 25 months. Patients by gender were male (84%) and female (16%). The average age was 61 years. 50% of patients were never smokers and 4% were current smokers. Presentation by stage; I–1, II–0, III– 9, IVA–37 (74%), IVB–3. 88% of patients were HPV/p16+. Patients were treated to 66–70 CGE. One local failure was reported at 13 months following treatment. One neck failure was reported at 12 months. 94% of patients were alive with no evidence of disease. One patient died without evidence of disease. There were no Grade 4 or Grade 5 toxicities. Conclusion: MFO-IMPT for oropharyngeal tumors is robust and provides excellent outcomes 2 years after treatment. A randomized trial is underway to determine if proton therapy will reduce chronic late toxicities of IMRT
Primary Subject
Secondary Subject
Source
(c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL