Novick, Sara; Quastel, Michael R.; Marcus, Stephanie; Chipman, David; Shani, Gad; Barth, Rolf F.; Soloway, Albert H., E-mail: maay100@bgumail.bgu.ac.il2002
AbstractAbstract
[en] Among the ways to deliver comparatively large amounts of boron to cells in vitro for boron neutron capture studies is the linkage of a boronated macromolecule such as polylysine to an antibody. In order to reduce interference with immunoreactivity, boronated polylysine (BPL) was linked to oligosaccharide moieties on the IgG molecule distant from the antibody combining sites. The resultant bioconjugate was chromatographically separated from free BPL and unconjugated antibody using a Sephacryl S300 column. The total measured boron per BPL-IgG conjugate, determined by direct current plasma atomic emission spectroscopy, was estimated to be ∼6 x 103 atoms. This, together with molecular weight estimations, indicated conjugation of about 3 polylysines to each IgG molecule. Immunoreactivity of the conjugate was found to be the same as that of the unconjugated polyclonal antibody. This was based on its concentration dependent interference with immunometric reactions for an antigen (TSH), whereas heat inactivated or non-specific antibody had no such inhibitory effects. The results support the hypothesis that the binding affinity of the conjugate for antigen was preserved after its linkage to BPL under the conditions described. The methodology described in this report may have applicability for the preparation of boronated antibodies as delivery agents for BNCT
Primary Subject
Source
S0969805101002979; Copyright (c) 2002 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Purpose: Sodium borocaptate (Na2B12H11SH or BSH) has been used clinically for boron neutron capture therapy (BNCT) of patients with primary brain tumors. The purpose of the present study was to determine if tumor uptake of BSH and efficacy of BNCT could be enhanced in F98 glioma-bearing rats by intracarotid (i.c.) injection of the compound with or without blood-brain barrier disruption (BBB-D). Methods and Materials: For biodistribution studies 100,000 F98 glioma cells were implanted stereotactically into the brains of Fischer rats, and 12 days later BBB-D was carried out by i.c. infusion of 25% mannitol, followed immediately thereafter by i.c. injection of BSH (30 mg B/kg body weight). Animals were killed 1, 2.5, and 5 h later, and their brains were removed for boron determination. For BNCT experiments, which were initiated 14 days after intracerebral implantation of 1000 F98 cells, BSH (30 mg B/kg b.wt. was administered intravenously (i.v.) without BBB-D, or i.c. with or without BBB-D. The animals were irradiated 2.5 h later with a collimated beam of thermal neutrons at the Brookhaven National Laboratory Medical Research Reactor. Results: The mean tumor boron concentration after i.c. injection with BBB-D was 48.6 ± 17.2 μg/g at 2.5 h compared with 30.8 ± 12.2 μg/g after i.c. injection without BBB-D and 12.9 ± 4.2 μg/g after i.v. injection. The best composite tumor to normal tissue ratios were observed at 2.5 h after BBB-D, at which time the tumor:blood (T:B1) ratio was 5.0, and the tumor: brain (T:Br) ratio was 12.3, compared to 1.1 and 4.6, respectively, in i.v. injected rats. The mean survival time for untreated control rats was 24 ± 3 days, 29 ± 4 days for irradiated controls, 33 ± 6 days for those receiving i.v. injection of BSH, 40 ± 8 days for rats receiving i.c. BSH without BBB-D, and 52 ± 13 days for BBB-D followed by BNCT (p = 0.003 vs. i.v. injected BSH). Conclusions: Intracarotid administration of BSH with or without BBB-D significantly increased tumor uptake of BSH and enhanced survival of F98 glioma-bearing rats following BNCT. BBB-D may be a useful way to enhance the delivery of both low and high molecular weight boron compounds to brain tumors. Further studies are in progress to assess this approach with other boron delivery agents
Primary Subject
Source
S036030169600082X; Copyright (c) 1997 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 37(3); p. 663-672
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Barth, Rolf F.; Yang Weilian; Rotaru, Joan H.; Moeschberger, Melvin L.; Boesel, Carl P.; Soloway, Albert H.; Joel, Darrel D.; Nawrocky, Marta M.; Ono, Koji; Goodman, Joseph H., E-mail: barth.1@osu.edu2000
AbstractAbstract
[en] Purpose: Boronophenylalanine (BPA) and sodium borocaptate (Na2B12H11SH or BSH) have been used clinically for boron neutron capture therapy (BNCT) of high-grade gliomas. These drugs appear to concentrate in tumors by different mechanisms and may target different subpopulations of glioma cells. The purpose of the present study was to determine if the efficacy of BNCT could be further improved in F98-glioma-bearing rats by administering both boron compounds together and by improving their delivery by means of intracarotid (i.c.) injection with or without blood-brain barrier disruption (BBB-D). Methods and Materials: For biodistribution studies, 105 F98 glioma cells were implanted stereotactically into the brains of syngeneic Fischer rats. Eleven to 13 days later animals were injected intravenously (i.v.) with BPA at doses of either 250 or 500 mg/kg body weight (b.w.) in combination with BSH at doses of either 30 or 60 mg/kg b.w. or i.c. with or without BBB-D, which was accomplished by i.c. infusion of a hyperosmotic (25%) solution of mannitol. For BNCT studies, 103 F98 glioma cells were implanted intracerebrally, and 14 days later animals were transported to the Brookhaven National Laboratory (BNL). They received BPA (250 mg/kg b.w.) in combination with BSH (30 mg/kg b.w.) by i.v. or i.c. injection with or without BBB-D, and 2.5 hours later they were irradiated with a collimated beam of thermal neutrons at the BNL Medical Research Reactor. Results: The mean tumor boron concentration ± standard deviation (SD) at 2.5 hours after i.c. injection of BPA (250 mg/kg b.w.) and BSH (30 mg/kg b.w.) was 56.3 ± 37.8 μg/g with BBB-D compared to 20.8 ± 3.9 μg/g without BBB-D and 11.2 ± 1.8 μg/g after i.v. injection. Doubling the dose of BPA and BSH produced a twofold increase in tumor boron concentrations, but also concomitant increases in normal brain and blood levels, which could have adverse effects. For this reason, the lower boron dose was selected for BNCT studies. The median survival time was 25 days for untreated control rats, 29 days for irradiated controls, 42 days for rats that received BPA and BSH i.v., 53 days following i.c. injection, and 72 days following i.c. injection + BBB-D with subsets of long-term survivors and/or cured animals in the latter two groups. No histopathologic evidence of residual tumor was seen in the brains of cured animals. Conclusions: The combination of BPA and BSH, administered i.c. with BBB-D, yielded a 25% cure rate for the heretofore incurable F98 rat glioma with minimal late radiation-induced brain damage. These results demonstrate that using a combination of boron agents and optimizing their delivery can dramatically improve the efficacy of BNCT in glioma-bearing rats
Primary Subject
Source
S0360301600004211; Copyright (c) 2000 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 47(1); p. 209-218
Country of publication
ANIMAL CELLS, ANIMALS, ARTERIES, BARYONS, BLOOD VESSELS, BODY, CARDIOVASCULAR SYSTEM, CENTRAL NERVOUS SYSTEM, DISEASES, ELEMENTARY PARTICLES, ELEMENTS, FERMIONS, HADRONS, INJECTION, INTAKE, MAMMALS, MEDICINE, NEOPLASMS, NERVOUS SYSTEM, NERVOUS SYSTEM DISEASES, NEUTRON THERAPY, NEUTRONS, NUCLEAR MEDICINE, NUCLEONS, ORGANS, RADIOLOGY, RADIOTHERAPY, RODENTS, SEMIMETALS, THERAPY, VERTEBRATES
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue