AbstractAbstract
[en] Pakistan is a gas rich but power poor country. It consumes approximately 1, 559 Billion cubic feet of natural gas annually. Gas is transported around the country in a system of pressurized transmission pipelines under a pressure-range of 600-1 000 psig exclusively operated by two state owned companies i.e. SNGPL (Sui Northern Gas Pipelines Limited) and SSGCL (Sui Southern Gas Company Limited). The gas is distributed by reducing from the transmission pressure into distribution pressure up to maximum level of 150 psig at the city gate stations normally called SMS (Sales Metering Station). As a normal practice gas pressure reduction at those SMSs is accomplished in pressure regulators (PCVs or in of natural gas is an untapped energy resource which is currently wasted by its throttling. This pressure reduction at SMS (pressure drop through SMS) may also be achieved by expansion of natural gas in TE, which converts its pressure into the mechanical energy, which can be transmitted any loading device for example electric generator. The aim of present paper is to explore the expected power production potential of various Sales Metering Stations of SSGCL company in Pakistan. The model of sales metering station was developed in a standard flow sheeting software Aspen HYSYS at the rate 7.1 to calculate power and study other parameters when an expansion turbine is used instead of throttling valves. It was observed from the simulation results that a significant power (more than 140 KW) can be produced at pressure reducing stations of SSGC network with gas flows more than 2.2 MMSCFD and pressure ration more than 1.3. (author)
Primary Subject
Record Type
Journal Article
Journal
Mehran University Research Journal of Engineering and Technology; ISSN 0254-7821; ; v. 34(3); p. 301-308
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] As (Arsenic) is one of the lethal element present at the various locations of the world, putting human beings in danger by polluting the water. Arsenic Kit and atomic absorption spectrometer were used to determine As in ground water of Sindh province, Pakistan. Twenty-Four (24) districts both on the left and right bank of RI (River Indus) were analyzed. It was observed from the results that highest As concentration 200 ppb (parts per billion) i.e. above the WHO (World Health Organization) limit (10 ppb) was observed in Sakrand, district Shaheed Benazirabad followed by Hala, Matairi, TMK (Tando Mohammad Khan) and Nasarpur regions. It was further found that ground water of regions on the left bank of RIwas more contaminated than the right bank. Contour map was created using OriginPro and coordinate systems to highlight the elevated arsenic in the studied area. HRA (Health Risk Assessment) of these areas was carried out to calculate EDI (Estimated Daily Intake), TQH (Target Hazard Quotient) and CR (Cancer Risk). 45% of the total ground water samples analyzed were above the permissible limit for As in water and mostly these are located on the left bank of RI. The local wells in Sindh have never been tested for metal concentration former to use. These results provide baselines for researchers, NGO's (Non-Governmental Organizations) and government to apply arsenic treatment technologies in those areas. (author)
Primary Subject
Record Type
Journal Article
Journal
Mehran University Research Journal of Engineering and Technology; ISSN 0254-7821; ; v. 36(4); p. 1037-1048
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Pakistan has proven huge coal reserves but still unable to harvest the energy due to unavailability of ingenious technology. Coal gasification is robust, efficient and environmental friendly technology but it is highly sensitive to the coal characteristics. Scant literature is available on the development of the coal gasification technology which suits the characteristics of indigenous coal reserves. This papers presents the simulation of entrained flow gasifier for using indigenous coal through process modeling software namely Aspen Plus® to evaluate various system flow steps within an entrained flow gasifier. General techniques have also been discussed for creating the equilibrium-bases simulations of gasification systems. Peng-Robinson equation was used to correlate the volume of species with respect to state variables (temperature and pressure). The effects of composition of different indigenous coals like Thar, Lakhra and Sonda were investigated through simulations along with O/C (Oxygen-to-Carbon) ratio. Parametric study revealed that the O/C ratio along with other related system parameters have great influence on the performance. Sulfur could be available in different forms in coal like pyrite, sulfate or organic sulfur so appropriate form of sulfur in feedstocks should be corrected for better accuracy of model results. The highest percentages of CO i.e. 44.2, 37.8, and 46.6% were obtained from Thar coal (air dried form), Lakhra coal and Sonda coal respectively at the 0.3 O/C ratio. The decrease in LHV and HHV (Lower and Higher Heating Values) of syngas was observed on increase of O/C ratio for all coal types. The composition of as received Thar coal gave maximum LHV (1.5x104 KJ/Kg) and HHV (1.78x104 KJ/Kg) at the 0.3 O/C ratio. The future work could be extended by simulating biomass composition in the developed model of gasifier in transient simulations. (author)
Primary Subject
Secondary Subject
Record Type
Journal Article
Journal
Mehran University Research Journal of Engineering and Technology; ISSN 0254-7821; ; v. 39(1); p. 97-110
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] The interest in the thermochemical conversion of biomass for producer gas production since last decade has increased because of the growing attention to the application of sustainable energy resources. Application of biomass resources is a valid alternative to fossil fuels as it is a renewable energy source. The valuable gaseous product obtained through thermochemical conversion of organic material is syngas, whereas the solid product obtained is char. This review deals with the state of the art of biomass gasification technologies and the quality of syngas gathered through the application of different gasifiers along with the effect of different operating parameters on the quality of producer gas. Main steps in gasification process including drying, oxidation, pyrolysis and reduction effects on syngas production and quality are presented in this review. An overview of various types of gasifiers used in lignocellulosic biomass gasification processes, fixed bed and fluidized bed and entrained flow gasifiers are discussed. The effects of various process parameters such as particle size, steam and biomass ratio, equivalence ratio, effects of temperature, pressure and gasifying agents are discussed. Depending on the priorities of several researchers, the optimum value of different anticipated productivities in the gasification process comprising better quality syngas production improved lower heating value, higher syngas production, improved cold gas efficiency, carbon conversion efficiency, production of char and tar have been reviewed. (author)
Primary Subject
Record Type
Journal Article
Journal
Mehran University Research Journal of Engineering and Technology; ISSN 0254-7821; ; v. 38(2); p. 495-512
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue