AbstractAbstract
[en] We experimentally demonstrate a low-light-level cross-phase-modulation (XPM) scheme based on the light-storage technique in laser-cooled 87Rb atoms. The proposed scheme can achieve a similar phase shift and has the same figure of merit as one using static electromagnetically induced transparency under the constant coupling field. Nevertheless, the phase shift and the energy loss of a probe pulse induced by a signal pulse are neither influenced by the coupling intensity nor by the atomic optical density in the light-storage XPM scheme. This scheme enhances the flexibility of the experiment and makes possible conditional phase shifts on the order of π with single photons
Primary Subject
Source
(c) 2006 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
BETA DECAY RADIOISOTOPES, BETA-MINUS DECAY RADIOISOTOPES, BOSONS, ELECTROMAGNETIC RADIATION, ELEMENTARY PARTICLES, INTERMEDIATE MASS NUCLEI, ISOTOPES, MASSLESS PARTICLES, MECHANICAL PROPERTIES, NUCLEI, ODD-EVEN NUCLEI, OPTICAL PROPERTIES, PHYSICAL PROPERTIES, RADIATIONS, RADIOISOTOPES, RUBIDIUM ISOTOPES, TENSILE PROPERTIES, YEARS LIVING RADIOISOTOPES
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] We have systematically studied the method proposed by Patnaik et al. [Phys. Rev. A 69, 035803 (2004)] that manipulates the retrieval of stored light pulses. The measured probe pulse width of the retrieval is inversely proportional to the intensity of the reading field. We also show that the method does not introduce any phase shift or jump into the retrieved pulses. Our study demonstrates that the distortion at the output of the light storage can be corrected by manipulating the retrieval process and the phase information of the stored pulses can remain intact during the process
Primary Subject
Source
(c) 2005 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL