AbstractAbstract
[en] A combination of geometric and algebraic methods is used to prove asymptotic completeness for Schroedinger-type equations with potential not vanishing at infinity along hyperboloids (in spacetime), and with the free Hamiltonian given by the (not bounded below) relativistic (mass)2 operator. The proof is based on the use of a modified form of local compactness and additional geometric properties of asymptotic scattering states which are needed to distinguish them from states 'trapped' inside some hyperboloid for all times. (orig.)
Primary Subject
Source
Record Type
Journal Article
Journal
Letters in Mathematical Physics; ISSN 0377-9017; ; v. 8(6); p. 517-527
Country of publication
Descriptors (DEI)
Descriptors (DEC)
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue