Karl Schwarzschild

German astronomer
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites
Quick Facts
Born:
October 9, 1873, Frankfurt am Main, Germany
Died:
May 11, 1916, Potsdam (aged 42)

Karl Schwarzschild (born October 9, 1873, Frankfurt am Main, Germany—died May 11, 1916, Potsdam) was a German astronomer whose contributions, both practical and theoretical, were of primary importance in the development of 20th-century astronomy.

Schwarzschild’s exceptional ability in science became evident at the age of 16, when his paper on the theory of celestial orbits was published. In 1901 he became professor and director of the observatory at the University of Göttingen, and eight years later he was appointed director of the Astrophysical Observatory at Potsdam.

While at Göttingen, Schwarzschild introduced precise methods in photographic photometry. The results of his studies clearly demonstrated the relationship between the spectral type and colour of a star. He pioneered in the use of a coarse grating (for example, a glass plate with closely spaced parallel lines etched into it) in the course of measurement of the separation of double stars; the technique has found widespread use in determining stellar magnitude and colour. He also developed certain basic methods for the analysis of solar spectra obtained during eclipses.

Italian-born physicist Dr. Enrico Fermi draws a diagram at a blackboard with mathematical equations. circa 1950.
Britannica Quiz
Physics and Natural Law

Schwarzschild enunciated the principle of radiative equilibrium and was the first to recognize clearly the role of radiative processes in the transport of heat in stellar atmospheres. His hypothesis of stellar motion is one of the most important results to come out of his fundamental work in modern statistical methods in astronomy. He also made theoretical studies of the pressure exerted on small, solid particles by radiation.

Schwarzschild made fundamental contributions to theoretical physics and to relativity. He was one of the great pioneers in developing the theory of atomic spectra proposed by Niels Bohr. Independently of Arnold Sommerfeld, Schwarzschild developed the general rules of quantization, gave the complete theory of the Stark effect (the effect of an electric field on light), and initiated the quantum theory of molecular spectra.

Schwarzschild gave the first exact solution of Albert Einstein’s general gravitational equations, which led to a description of the geometry of space in the neighbourhood of a mass point. He also laid the foundation of the theory of black holes by using the general equations to demonstrate that bodies of sufficient mass would have an escape velocity exceeding the speed of light and, therefore, would not be directly observable.

While serving in the imperial German army during World War I, Schwarzschild contracted a fatal illness.

Get Unlimited Access
Try Britannica Premium for free and discover more.
The Editors of Encyclopaedia BritannicaThis article was most recently revised and updated by Encyclopaedia Britannica.
  翻译: