JavaScript Algorithms and Data Structures: Comprehensive Guide
JavaScript Algorithms and Data Structures: Comprehensive Guide
This guide introduces essential algorithms and data structures, implemented using JavaScript. You'll learn key concepts, code examples, and practical applications, with exercises and quiz questions to reinforce your understanding.
What Are Algorithms and Data Structures?
Why Learn Algorithms and Data Structures?
Common Data Structures
1. Arrays
Arrays store multiple values in a single variable.
const fruits = ["apple", "banana", "cherry"];
console.log(fruits[1]); // Output: banana
Common Operations:
2. Linked Lists
A linked list is a collection of nodes where each node contains data and a reference to the next node.
class Node {
constructor(data) {
this.data = data;
this.next = null;
}
}
class LinkedList {
constructor() {
this.head = null;
}
append(data) {
const newNode = new Node(data);
if (!this.head) {
this.head = newNode;
} else {
let current = this.head;
while (current.next) {
current = current.next;
}
current.next = newNode;
}
}
display() {
let current = this.head;
while (current) {
console.log(current.data);
current = current.next;
}
}
}
const list = new LinkedList();
list.append(10);
list.append(20);
list.display(); // Output: 10, 20
3. Stacks
A stack follows the LIFO (Last In, First Out) principle.
class Stack {
constructor() {
this.items = [];
}
push(item) {
this.items.push(item);
}
pop() {
return this.items.pop();
}
peek() {
return this.items[this.items.length - 1];
}
}
const stack = new Stack();
stack.push(5);
stack.push(10);
console.log(stack.pop()); // Output: 10
4. Queues
A queue follows the FIFO (First In, First Out) principle.
class Queue {
constructor() {
this.items = [];
}
enqueue(item) {
this.items.push(item);
}
dequeue() {
return this.items.shift();
}
}
const queue = new Queue();
queue.enqueue(5);
queue.enqueue(10);
console.log(queue.dequeue()); // Output: 5
Common Algorithms
1. Searching Algorithms
function linearSearch(arr, target) {
for (let i = 0; i < arr.length; i++) {
if (arr[i] === target) {
return i;
}
}
return -1;
}
console.log(linearSearch([1, 2, 3, 4, 5], 3)); // Output: 2
function binarySearch(arr, target) {
let left = 0;
let right = arr.length - 1;
while (left <= right) {
const mid = Math.floor((left + right) / 2);
if (arr[mid] === target) {
return mid;
} else if (arr[mid] < target) {
Recommended by LinkedIn
left = mid + 1;
} else {
right = mid - 1;
}
}
return -1;
}
console.log(binarySearch([1, 2, 3, 4, 5], 3)); // Output: 2
2. Sorting Algorithms
function bubbleSort(arr) {
for (let i = 0; i < arr.length; i++) {
for (let j = 0; j < arr.length - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
[arr[j], arr[j + 1]] = [arr[j + 1], arr[j]];
}
}
}
return arr;
}
console.log(bubbleSort([5, 3, 8, 4, 2])); // Output: [2, 3, 4, 5, 8]
function mergeSort(arr) {
if (arr.length <= 1) {
return arr;
}
const mid = Math.floor(arr.length / 2);
const left = mergeSort(arr.slice(0, mid));
const right = mergeSort(arr.slice(mid));
return merge(left, right);
}
function merge(left, right) {
const result = [];
while (left.length && right.length) {
if (left[0] < right[0]) {
result.push(left.shift());
} else {
result.push(right.shift());
}
}
return result.concat(left, right);
}
console.log(mergeSort([5, 3, 8, 4, 2])); // Output: [2, 3, 4, 5, 8]
Exercises
Exercise 1: Reverse a String Using a Stack
Write a function to reverse a string using a stack data structure.
Solution:
function reverseString(str) {
const stack = [];
for (const char of str) {
stack.push(char);
}
return stack.reverse().join('');
}
console.log(reverseString("hello")); // Output: "olleh"
Exercise 2: Find the Maximum in a Linked List
Write a function to find the maximum value in a linked list.
Solution:
function findMax(linkedList) {
let max = -Infinity;
let current = linkedList.head;
while (current) {
if (current.data > max) {
max = current.data;
}
current = current.next;
}
return max;
}
Exercise 3: Implement a Queue Using Two Stacks
Write a function to implement a queue using two stacks.
Solution:
class QueueUsingStacks {
constructor() {
this.stack1 = [];
this.stack2 = [];
}
enqueue(item) {
this.stack1.push(item);
}
dequeue() {
if (!this.stack2.length) {
while (this.stack1.length) {
this.stack2.push(this.stack1.pop());
}
}
return this.stack2.pop();
}
}
const queue = new QueueUsingStacks();
queue.enqueue(1);
queue.enqueue(2);
console.log(queue.dequeue()); // Output: 1
Multiple-Choice Questions
Question 1:
Which data structure follows the LIFO principle?
Answer: 2. Stack
Question 2:
What is the time complexity of binary search?
Answer: 3. O(logn)O(\log n)O(logn)
Question 3:
Which sorting algorithm is the most efficient for large datasets?
Answer: 3. Merge Sort
Best Practices
Développeuse Web Junior
1moM M