Personalized Learning Assistant: AI Project – PART 5
Deeper Insights into Testing Strategies, Advanced ML Features, and User Engagement Tracking
For the Personalized Learning Assistant, it is essential to validate functionality thoroughly, explore advanced ML capabilities for dynamic recommendations, and track user engagement to fine-tune the system. Here's an in-depth breakdown:
1. Testing Strategies
Backend Testing
a. Unit Testing
Example: Testing ProgressService
[Fact]
public async Task GetProgressByUser_ShouldReturnProgressForValidUser()
{
// Arrange
var mockDbContext = new Mock<LearningDbContext>();
var service = new ProgressService(mockDbContext.Object);
var userId = 1;
var progressData = new List<Progress>
{
new Progress { ProgressID = 1, UserID = 1, CourseID = 101, CompletionPercentage = 75.5f, LastAccessed = DateTime.Now }
};
mockDbContext.Setup(db => db.Progress.Where(It.IsAny<Expression<Func<Progress, bool>>>()))
.Returns(progressData.AsQueryable());
// Act
var result = await service.GetProgressByUser(userId);
// Assert
Assert.NotNull(result);
Assert.Equal(1, result.Count);
Assert.Equal(75.5f, result.First().CompletionPercentage);
}
b. Integration Testing
Example: Test API Endpoint
[Fact]
public async Task GetRecommendationsEndpoint_ShouldReturnRecommendedCourses()
{
var client = _factory.CreateClient();
var response = await client.GetAsync("/api/Recommendations/1");
response.EnsureSuccessStatusCode();
var content = await response.Content.ReadAsStringAsync();
Assert.Contains("Intro to AI", content);
}
c. Load Testing
Frontend Testing
a. Unit Testing
[Fact]
public void CourseList_ShouldRenderCorrectly()
{
// Arrange
using var ctx = new TestContext();
var courses = new List<Course> { new Course { CourseID = 101, CourseName = "Intro to AI" } };
ctx.Services.AddSingleton(courses);
// Act
var component = ctx.RenderComponent<CourseList>();
// Assert
Assert.Contains("Intro to AI", component.Markup);
}
b. End-to-End Testing
Database Testing
Recommended by LinkedIn
2. Advanced ML Features for Recommendations
Dynamic Recommendations Using Context-Aware Filtering
Enhance recommendations by including contextual data such as:
Implementation: Contextual Embeddings
Use a pre-trained transformer model like BERT for encoding course descriptions and user preferences dynamically.
Steps:
Incorporating Reinforcement Learning
Utilize reinforcement learning to dynamically adapt recommendations based on feedback (e.g., likes/dislikes, course completions).
Workflow:
3. User Engagement Tracking
Key Metrics
Database Schema
Add an EngagementLog table to track user interactions.
Field Type Constraints Description
LogID int Primary Key, Identity Unique identifier for the log entry.
UserID int Foreign Key (Users) References the Users table.
CourseID int Foreign Key (Courses) References the Courses table.
Action nvarchar(50) Not Null E.g., "Viewed", "Completed".
Timestamp datetime Not Null Timestamp of the interaction.
Engagement Analytics Service
public class EngagementService
{
private readonly LearningDbContext _context;
public EngagementService(LearningDbContext context)
{
_context = context;
}
public async Task<int> GetTotalActiveUsers()
{
var oneWeekAgo = DateTime.Now.AddDays(-7);
return await _context.EngagementLogs
.Where(log => log.Timestamp >= oneWeekAgo)
.Select(log => log.UserID)
.Distinct()
.CountAsync();
}
public async Task<List<string>> GetTopCoursesByEngagement()
{
return await _context.EngagementLogs
.GroupBy(log => log.CourseID)
.OrderByDescending(g => g.Count())
.Select(g => g.Key.ToString())
.Take(5)
.ToListAsync();
}
}
Frontend Integration
Deployment and Scaling
Infrastructure
Scaling Recommendations
Future Enhancements